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ABSTRACT
Segmenting transparent phase objects, such as biological

cells from brightfield microscope images, is a difficult prob-
lem due to the lack of observable intensity contrast and noise.
Previous image analysis solutions have used excessive de-
focusing or physical models to obtain the underlying phase
properties. Here, an improved cell boundary detection algo-
rithm is proposed to accurately segment multiple cells within
the level set framework. This uses a novel speed term based
on local phase and local orientation derived from the mono-
genic signal, which renders the algorithm invariant to inten-
sity, making it ideal for these images. The newmethod can ro-
bustly handle noise and local minima, and distinguish touch-
ing cells. Validation is shown against manual expert segmen-
tations.

Index Terms— Biomedical image processing, Microscopy,
Image segmentation

1. INTRODUCTION

Cell biologists acquiring microscopic single cell images of-
ten combine fluorescence microscopy, for functional imag-
ing, along with brightfield microscopy to acquire anatomical
information with which to localise the fluorescence signals
(a process analogous to PET/CT for whole body imaging).
However brightfield cell images are difficult to analyse with
conventional intensity-based methods due to the lack of inten-
sity contrast between the cells and background. The presence
of noise, uneven background intensities from inhomogenous
light sources, and artefacts on the lens can complicate im-
age analysis further. Defocusing improves the contrast, but at
the expense of resolution due to blurring by the point-spread
function.
There has been renewed interest in brightfield image cell

segmentation in recent literature. Texture differences offer a
potential method of discriminating cells from background in
in-focus images. Korzynska et al [1] use information from
both second moment statistics for quantifying texture and a
Prewitt edge detector, however the parameterisation of their
method is initialisation-sensitive. Texture-based methods can

also be confused by lens artefacts such as the dark spots in
Figure 2a. Tscherepanow et al [2] recognise the requirement
for additional information when segmenting complex shapes,
and introduce an extra DIC (Differential Interference Con-
trast) microscope image in their active snakes method. Our
previous work [3] requires multiple defocused images to as-
sist the initialisation of a level set, and extracts additional in-
formation using local phase, an intensity-invariant feature de-
tector computed using the monogenic signal [4]. An alterna-
tive approach uses models of light propagation to recover the
underlying physical phase, by solving the Transport of Inten-
sity (TIE) equation [5]

−k∂zI(x, y) = ∇⊥ · [I(x, y)∇⊥Θ(x, y)] (1)

where I(x, y) is the image intensity, ∇⊥ is the gradient
operator orthogonal to the image x-y plane, andΘ(x, y) is the
physical phase. The TIE is commonly solved using the Fast
Fourier Transform as described in [6], and in theory yields
promising images with higher contrast. Applications of this
approach to brightfield cell images have been based primar-
ily on thresholding [7] or simple shape fitting [8]. However
several reports [9] [10] and our own work show that recover-
ing phase using this method under sub-optimal conditions can
create strong low-frequency artefacts. These obscure the cell
signal, even after applying periodic boundary conditions and
low-frequency filtering, making consistent cell edge detection
difficult.
Our new approach extends [3] in several ways. First, it

Fig. 1. Two segmentation results (red contours) of HeLa cells
observed by brightfield microscopy, using our method.
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simplifies the input requirements to two brightfield images,
one less than the TIE-based approaches. More efficient use is
made of the information derived from the monogenic signal,
enabling the computation of an improved speed term which
is able to escape from local minima. The level set framework
is used to segment multiple objects, and the algorithm is able
to separate and keep apart touching cells. The new method is
not only more accurate, but also more robust to lens artefacts
and background inhomogeneities.
Figure 1 shows some typical segmentation results obtained

by our method. The next section outlines the methods used,
and Section 3 presents the results and validations. A discus-
sion of the method and its potential applications is given in
Section 4.

2. METHOD

2.1. Image Acquisition

Transillumination brightfield images were acquired for HeLa
immortal cervical cancer cells using an inverted Nikon Eclipse
TE2000E epifluorescence microscope at 40x magnification,
illuminated with a mercury arc 100W lamp without any fre-
quency filters. Two images were acquired symmetrically just
above and below the focal plane (Δz = ±5μm). An in-focus
image (Δz = 0) was also acquired for reference.

2.2. Initialisation

A derivative image across Δz = 0 is created from the out-
of-focus images (Figure 2B), similar to the first step when
solving the TIE. This normalises the background and removes
any lens-based artefacts that will be present in both images (as
they will be invariant to defocusing).

∂I(x, y, 0)

∂z
≈ I(x, y,+Δz)− I(x, y,−Δz) (2)

A common technique in 1D feature detection is the use
of band-pass quadrature filters, derived using the analytic sig-
nal. These are applied to windowed signals in order to extract
a property known as local phase, which is sensitive to the
presence of a feature. The monogenic signal [4] is a multi-
dimensional generalisation of the analytic signal, and we use
it with a quadrature triple filter set to compute local phase
(Figures 2C) and local orientation (Figures 2D). The filters
are based on a filter family developed by Mellor et al [11]:

f(r) =
A

rα+β
−

B

rα−β
(3)

where r is the filter radius, A,B are arbitrary constants,
and α = 0.25 and β = 0.025. This creates a lowpass fil-
ter, which is unusual when computing the monogenic signal,
however it allows us to isolate large-scale features in our im-
ages. Unwanted background features in the resultant local

phase map are removed by masking them with a thresholded
variance map of the derivative image, and the corrected lo-
cal phase map is thresholded to generate an estimation of the
cell regions. Each region is uniquely labelled using connected
components to generate an (n + 1)-class initialisation map
(describing n identifiable cell regions plus background). A
manual step is then performed where the user clicks once in
each cell (thus definingm cells, wherem ≥ n).

2.3. Splitting Touching Cells

The initialisation process can yield regions which contain mul-
tiple touching cells. These are separated by performing re-
gion growing on the labelled initialisation map from each of
the user-defined seed points to givem + 1 classes. This step,
coupled with our level set which prevents region merging (see
next section), ensures that each cell is separately segmented,
and the level set is able to compensate for any incorrectly de-
fined boundaries between neighbouring cells.

Fig. 2. (A) In-focus image of a cluster of touching HeLa cells,
(B) derivative image, (C) local phase map, (D) local orienta-
tion map (with directional arrows superimposed).

2.4. Level Set Evolution

A narrowband multi-region level set implementation by Good-
ing et al [12] is used. A signed distance φ is generated from
the initialisation map, and the level set PDE below is solved
to convergence:

∂φ

∂t
+ F |∇φ| = 0 (4)

where the speed term F is given by

F = αFphase + βForientation + γFsmooth (5)
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Fig. 3. The local orientation force used to drive the level set
function.

Fphase is a PDF-based region term [12] computed over
the local phase map. A local window PDF W is sampled at
each point on the zero level set, and compared to the PDFs
for the current cell class j and the neighbouring (cell or back-
ground) class i. The region term compares these distributions:

Fphase =
pdfv(W ) · pdfv(i)

‖pdfv(i)‖
−max

j �=i

(
pdfv(W ) · pdfv(j)

‖pdfv(j)‖

)

(6)
where pdfv(.) is the vector form of the PDF, with dimen-

sion equal to the maximum number of intensity values (255).
Forientation is an orientation specific term. Local orien-

tation is used to guide the level set evolution, by comparing it
at each iteration to the direction of∇ (φ = 0):

Forientation = cos (θ∇φ − θLO) (7)

where θ∇φ is the angle of the normal vector of φ, and θLO

is the local orientation angle. Where the two are in agreement,
φ experiences a positive expansion force, whilst if the two are
opposing then φ will experience a negative force (Figure 3).

Fsmooth is a regularising term using the curvature of φ,
and α, β, γ are weighting terms set to 1, 0.5 and 1 respectively
(the algorithm is insensitive to small changes in these values).
Finally the level set algorithm also contains an overriding re-
pulsion term which sets F = −1 if two distinct regions are
about to touch, to prevent region merging.

2.5. Validation

The results are compared against manual ground truths by ex-
pert cell biologists, and also against Lysotracker fluorescence
images. Where the brightfield and fluorescence images are
misaligned (due to specimen container shift within the mi-
croscope), they are realigned using mutual information rigid

registration [13] between the fluorescence image and the local
phase map of the brightfield image.

Fig. 4. (A) Segmentation results (red contours) using local
phase and local orientation speed terms (α = 1, β = 0.5),
(B) using local phase alone (α = 1, β = 0), and (C) using the
local orientation term alone (α = 0, β = 0.5).

3. RESULTS

Figure 4 shows how our speed term performs without the local
phase or local orientation term. The local orientation term
provides a strong driving force which compensates for regions
where local phase information is weaker, and thus allows the
level set to evolve quicker and escape from local minima such
as the concavity in the corner of the top cell. However the
local phase term is important for bounding the contour to the
cell regions, and omitting this results in oversegmentation.
Figure 5 shows a segmentation result on a noisy image

using the speed term in Equation 5. The results can be seen
to correlate well with the cellular regions in the fluorescence
image. There are several touching cells in the image, however
the level set repulsion term successfully keeps them apart.
The method was evaluated against manual segmentations

provided by three expert cell biologists. Using a sample of
134 cells, our algorithm correctly classified 83% of true cell
pixels (±7%). This improves upon our previous method [3].
More importantly however, the new method is more robust
against noise, and is able to work on cell images which our
earlier method fails on.
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Fig. 5. Segmentation result overlaid on (A) the brightfield im-
age in Figure 2A (white contour), and (B) a LysoTracker (In-
vitrogen Corporation TM) fluorescence image (red contour).

4. DISCUSSION

Despite the work done to date on brightfield microscopy im-
age analysis, there is considerable scope for improvement by
using recent developments from the broader medical vison
field. The monogenic signal is such an example, as it has been
successfully used in similar problems (e.g. breast mammo-
gram feature detection [14]) where there is weak feature in-
formation in the intensity data. We use it to extract local phase
and local orientation from our brightfield images, enabling a
robust speed function to be used within a multi-region level
set approach.
Our method has been shown to segment cells from chal-

lenging image data, and is sufficiently accurate to be able to
quantify intracellular fluorescence and cell structure. We plan
to use it as a tool for investigating the uptake/efflux pharma-
cokinetics of fluorescent derivatives of the hypoxia-selective
PET tracer CuATSM in cancer cells [15], and for investigat-
ing the change in cancer cell morphology in response to tracer
concentration under normoxic and hypoxic conditions. We
also aim to develop the method further, by automating the al-
gorithm’s seeding and parameter selection to minimise user
intervention, and using texture information to segment the re-
gions currently being missed. Finally we have developed a
user interface which we plan to make freely available to cell
biologists for their research. Details of this interface can be
found at www.sephace.com.
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